Extrasynaptic NMDA Receptor in Excitotoxicity
نویسندگان
چکیده
منابع مشابه
Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity.
Excitatory synaptic activity governs excitotoxicity and modulates the distribution of NMDA receptors (NMDARs) among synaptic and extrasynaptic sites of central neurons. We investigated whether NMDAR localization was functionally linked to excitotoxicity by perturbing F-actin, a cytoskeletal protein that participates in targeting synaptic NMDARs in dendritic spines. Depolymerizing F-actin did no...
متن کاملEndocytosis of GluN2B-containing NMDA receptor mediates NMDA-induced excitotoxicity
Abstract N-methyl-D-aspartate (NMDA) receptor overactivation is involved in neuronal damage after stroke. However, the mechanism underlying NMDA receptor-mediated excitotoxicity remains unclear. In this study, we confirmed that excessive activation of NMDARs led to cell apoptosis in PC12 cells and in primary cultured cortical neurons, which was mediated predominantly by the GluN2B-containing, b...
متن کاملExtrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders
NMDA receptor (NMDAR)-induced excitotoxicity is thought to contribute to the cell death associated with certain neurodegenerative diseases, stroke, epilepsy, and traumatic brain injury. Targeting NMDARs therapeutically is complicated by the fact that cell signaling downstream of their activation can promote cell survival and plasticity as well as excitotoxicity. However, research over the past ...
متن کاملExtrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP.
NMDA receptor (NMDAR)-mediated excitotoxicity plays an important role in several CNS disorders, including epilepsy, stroke, and ischemia. Here we demonstrate the involvement of striatal-enriched protein tyrosine phosphatase (STEP) in this critical process. STEP(61) is an alternatively spliced member of the family that is present in postsynaptic terminals. In an apparent paradox, STEP(61) regula...
متن کاملCellular prion protein and NMDA receptor modulation: protecting against excitotoxicity
Although it is well established that misfolding of the cellular prion protein (PrP(C)) into the β-sheet-rich, aggregated scrapie conformation (PrP(Sc)) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrP(C) are still incompletely understood. There is accumulating evidence describing the roles of PrP(C) in neurodegeneration and neuroinflammation. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Neuroscientist
سال: 2014
ISSN: 1073-8584,1089-4098
DOI: 10.1177/1073858414548724